BEFORE THE POLLUTION CONTROL BOARD OF THE STATE OF ILLINOIS

)

)

)

)

)

IN THE MATTER OF: Petition of Emerald Performance Materials LLC for an Adjusted Standard from 35 Ill. Adm. Code 304.122(b)

AS 13-2 (Adjusted Standard)

NOTICE OF FILING

TO: See List

PLEASE TAKE NOTICE that on Friday, June 20, 2014, we filed the attached Motion to File Instanter with the Clerk of the Illinois Pollution Control Board, a copy of which is herewith scrved upon you.

Respectfully submitted,

Emerald Performance Materials LLC

Poy Marsch — - One of Its Attorneys

By:

Roy M. Harsch Drinker Biddle & Reath LLP 191 N. Wacker Drive - Suite 3700 Chicago, Illinois 60606-1698 312-569-1441

THIS FILING IS SUBMITTED ELECTRONICALLY

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

)

)

))

)

IN THE MATTER OF:

PETITION OF EMERALD PERFORMANCE MATERIALS, LLC FOR ADJUSTED STANDARD FROM 35 ILL. ADM. CODE 304.122(b) AS 13-2 (Adjusted Standard – Water)

MOTION TO FILE INSTANTER

Now comes Emerald Performance Materials, LLC ("Emerald") by its attorneys, Drinker Biddle & Reath LLP, by and through their counsel, and hereby submits a Motion to File Instanter the attached two documents into the record for use by the Illinois Pollution Control Board in consideration of the requested Adjusted Standard. In support thereof, the following statements are made:

1. Emerald filed its Petition for Adjusted Standard on August 28, 2012 with fourteen Exhibits including Exhibit 13 which was a letter from Mr. T. Houston Flippin, Brown and Caldwell, dated August 27, 2012 to the undersigned.

2. On January 12, 2013, the Illinois Environmental Protection Agency ("Agency") filed its Recommendation to deny Emerald's requested relief. The Agency's Recommendation included 9 conditions that they believed should be included if the Board grants Emerald regulatory relief over the Agency's objections.

3. On December 17, 2012 the Hearing Officer directed Emerald to provide answers to a number of Questions.

4. Emerald provided detailed responses on April 12, 2013 to these questions.

5. On August 1, 2013 the Hearing Officer directed the Parties to respond to additional questions.

6. Emerald responded on October 8, 2013 to these questions. In this response, Emerald stated that it would provide the results of additional Whole Effluent Toxicity Testing to the Board and to the Agency.

7. Attached as Appendix A is a revised letter dated July 8, 2013 prepared by Mr. Flippin to replace that which was originally submitted as Exhibit 13. A copy of this revised document has been previously provided to the Agency.

8. Attached as Appendix B is copy of the results of Whole Effluent Toxicity Testing dated November 22, 2013. A copy of this testing report has been previously provided to the Agency.

9. Emerald and the Agency have reached an agreement on the recommended conditions that should be included in any regulatory relief granted by the Board and on June 17, 2014 filed an agreed motion setting forth the agreement. Emerald and the Agency also filed a joint motion requesting that the Board rescind or modify its prior order setting forth this case for hearing and requesting that the case be decided based upon the record in the previous case and the information submitted with the petition and the responses to the two Hearing Officer Orders. These motions remain pending. Emerald requests that the Revised Brown and Caldwell report and most resent Whole Effluent Toxicity Report be included into the record for the Board's consideration.

10. The undersigned has been authorized to state that the Agency does not have any objection to this request to include these two Attachments into the Record of this proceeding.

WHEREFORE, for the reasons stated herein, Emcrald respectfully requests that the grant this Motion for Leave to File Instanter and accept the two attached documents into the record of this proceeding for consideration in ruling on the requested relief.

Emerald Performance, LLC by its attorney

On Marsch

Roy M. Harsch Drinker Biddle & Reath LLP 191 N. Wacker, Suite 3600 Chicago, Illinois 60606 (312) 569-1441 Roy.Harsch@dbr.com

CERTIFICATE OF SERVICE

Roy M. Harsch herein certifies that he has served a copy of the foregoing Notice of Filing and Motion for Leave to File Instanter on Friday, June 20, 2014, to each persons on the attached sevice list.

It is hereby certified a true copy of the foregoing was hand delivered to the following on Friday, June 20, 2014:

John T. Therriault Illinois Pollution Control Board James R. Thompson Center 100 W. Randolph Street – Suite 11-500 Chicago, IL 60601

Service List

Joanne M. Olson IEPA 1021 North Grand Avenue East P.O. Box 19276 Springfield, IL 62794-9276 Joanne.Olson@illinois.gov

Carol Webb Hearing Officer Illinois Pollution Control Board 1021 North Grand Avenue East P.O. Box 19274 Springfield, IL 62794-9274 Carol.Webb@illinois.gov

Brenda Abke Emerald Performance Materials, LLC 1550 County Road 1450 N Henry, IL 61527 Brenda.Abkc@EmeraldMaterials.com William Stone, Plant Manager Emerald Performance Materials, LLC 1550 County Road 1450 N Henry, IL 61527

Kellie Staab, HSE Manager Emerald Performance Materials, LLC 1550 County Road 1450 N Henry, IL 61527

Roy Marsch

Roy M. Harsch Drinker Biddle & Reath LLP 191 N. Wacker, Suite 3600 Chicago, Illinois 60606 (312) 569-1441 Roy.Harsch@dbr.com

501 Great Circle Road, Suite 150 Nashville, Tennessee 37228

T: 615-255-2288 F: 615-256-8332

July 8, 2013

Privileged and Confidential-Attorney Work Product

Mr. Roy M. Harsch, Esq. Drinker, Biddle & Reath LLP 191 North Wacker, Suite 3700 Chicago, IL 606-1698

140975

Subject: Ammonia-Nitrogen Treatment Alternatives For Emerald Performance Materials, LLC-Henry, IL Plant

Dear Mr. Harsch:

In November 2004, the Illinois Pollution Control Board (PCB) adopted an Opinion and Order in AS 02-5 that granted Noveon an adjusted standard from the ammonia water quality standard and established a daily maximum effluent limitation of 155 milligrams per liter (mg/L) that was contingent upon several conditions. Subsequently, Emerald Performance Materials LLC (Emerald) purchased the Henry Plant from Noveon and continues to operate it pursuant to a National Pollutant Discharge Elimination System (NPDES) Permit which incorporates the conditions imposed in the PCB Order.

One of these conditions was that Emerald continue to investigate production methods and technologies that contribute less ammonia to Emerald's discharge into the Illinois River. Where practical, Emerald must substitute current methods or technologies with new ones so long as the substitution generates less ammonia in Emerald's discharge. It should be noted that most of the effluent ammonia discharged originates as influent organic nitrogen that is bio-hydrolyzed to ammonia during the treatment provided in the onsite wastewater treatment facility (WWTF). Organic nitrogen compounds serve as building blocks for Emerald products and therefore are used throughout the production processes. Consequently, this evaluation focused on both influent Total Kjeldahl Nitrogen (TKN) and ammonia loadings.

Brown and Caldwell (BC) was involved in the effort to obtain the relief in AS 02-5. The existing chemical processes at the Henry Plant and their associated waste streams were evaluated. After this evaluation, it was determined that there were no economically feasible treatment alternatives that would reliably reduce the effluent ammonia-nitrogen (NH₃-N) concentrations to comply with the effluent limitations set forth by the PCB. BC previously prepared a report which was used as an exhibit in AS 02-5 and testified in support of the requested relief. The PCB accepted in large part the results of the work as the basis for the relief it granted. The purpose of this letter is to revisit this determination and see what (if any) changes have occurred since 2004.

Reductions in Influent and Effluent NH₃-N Loads

A comparison of the influent and effluent NH₃-N loadings from 2002 and 2011 are presented in Tables 1 and 2. Minimal sampling of the influent (3 samples) indicates that the influent nitrogen loading may have increased. Furthermore, the very limited

Mr. Roy M. Harsch, Esq. Drinker, Biddle & Reath LLP July 8, 2013 Page 2

data indicate that the influent TKN loading may have shifted from the PC Tank to the PVC Tank discharge. This influent data for TKN and NH₃-N are likely not representative as they stand in contrast to the much more extensive influent chemical oxygen demand (COD) and effluent NH₃-N data available. Extensive sampling (5 or more days per week) indicates that the influent COD loads summarized in Table 1 have decreased by 38 percent and effluent NH₃-N loads summarized in Table 2 have decreased by 48 percent. These decreases are principally due to lower COD and TKN loads being discharged through the PC Tank to the influent to the WWTF. This reduction has been attributed to the shutdown of X70 and Geltrol, much lower production of OBTS (2 months every 3 months versus weekly before), much lower production of C-18 (2 weeks every quarter versus monthly before), and improved recovery in the tertiary butyl amine (TBA) column. This production decrease and other production related matters are illustrated in Table 3 for the period of 2002 through 2011.

Emerald is in the process of regaining total production levels previously observed in 2004. As production increases, the effluent flow rate, NH₃-N load, and effluent NH₃-N concentration are expected to increase. The extent of this increase will depend on product mix, which is dictated by unpredictable market conditions. The quantity of effluent NH₃-N discharged as a function of annual production has varied by 38 percent. Any observed reductions in effluent flow rate and NH₃-N load between 2002 and early 2011 will not be realized as production increases. Consequently, the wasteload estimates and treatment cost estimates presented herein are only applicable for the production levels and product mix present during late 2010 and early 2011. Emerald will need to retain the current effluent NH₃-N allocation to allow the plant to comply with effluent flimitations while seeking to restore production capacity.

Table 1. Influent Wasteloads Used in Developing Treatment Alternatives								
Parameter	P VC Tank	PC Tank	C-18 Tank	Holding Pond/Well No. 3	Total			
Flow Rate, gpm								
2002 Average	401	107	6	46	560			
2002 Peak	499	150	15	105	769			
2011ª Average	345	72	3	118	538			
2011ª Peak	400	94	3	154	652			
SCOD, Ibs/day				1				
2002 Average	2650	8280	1320	50	12300			
2002 Peak	4330	10840	2940	50	18160			
2011 Average	2514	4396	776	Not Analyzed	7685			
2011 Peak	6532	7711	1258	Not Analyzed	15500			
Estimated BOD, ibs/day								
2002 Average	795	2485	395	15	3690			
2002 Peak	1300	3250	880	15	5445			

Phyloges and Cestionatol Attorney/Claim Werk Private http://Claim.Werk Privat

Mr. Roy M. Harsch, Esq. Drinker, Biddle & Reath LLP July 8, 2013 Page 3

Table 1. Influent Wasteloads Used in Developing Treatment Alternatives								
Parameter	PVC Tank	PC Tank	C-18 Tank	Holding Pond/Well No. 3	Total			
2011 Average	754°	1319ª	233 ^a	Not Analyzed	2305			
2011 Peak	1960ª	2313ª	377♭	Not Analyzed	4650			
TKN, Ibs/day								
2002 Average	459	494	82	3	1038			
2002 Peak	640	693	198	7	1538			
2011 Average	1091	287	63	3	1443			
2011 Peak	1296	612	74	5	1987			
NH3-N, Ibs/day								
2002 Average	295	62	27	1	385			
2002 Peak	411	87	66	З	567			
2011 Average	235 ^b	8	21º	1 °	265			
2011 Peak	469 ^b	8	25°	20	504			

For period of March 2010 to February 2011 for flow and COD data. TKN and NH₃-N data were gathered during a 3-day period of June 29 through July 1, 2011.

^b Values estimated based on prior BOD/COD ratio of 0.3.

e Value estimated for C-18 based upon previous NH₃-N/TKN ratio. Value estimated for PVC Tank by calculation using available PVC lift station and side stream data.

Table 2. Effluent Wasteloads Used in Developing Treatment Alternatives				
Parameter	Effluent Value			
Flow Rate, gpm				
2002 Average	560			
2002 Peak	769			
2011ª Average	538			
2011ªPeak	652			
NH3-N, lbs/day				
2002 Average	909			
2002 Peak	1408			
2011 Average	473			
2011 Peak	940			

* For period of March 2010 to February 2011.

Privileged and ConfidentianAttorney/Clinict Work Product 1.070813har.docx

Mr. Roy M. Harsch, Esq. Drinker, Biddle & Reath LLP July 8, 2013 Page 4

	Table 3. Production and Effluent Quality (2002 through 2011)									
Year	Inter- mediates	Finished	Total Product	NH₃-N	Flow	NH3-N	Flow			
	(mm lbs)	(mm lbs)	(mm lbs)	(mm lbs)	(MG)	(lb/lb product)	(gal/lb product)			
2002	11.9	23.1	35.0	0.267	276	0.0076	7.9			
2003	11.0	22.9	33.9	0.192	274	0.0057	8.1			
2004	14.0	26.9	40.9	0.286	315	0.0070	7.7			
2006	8.9	20.8	29.7	0.224	332	0.0075	11.2			
2007	11.7	24.8	36.5	0.231	320	0.0063	8.8			
2008	11.3	22.6	33.9	0.185	328	0.0055	9.7			
2009	6.2	14.0	20.2	0.146	314	0.0072	15.5			
2010	9.4	19.2	28.6	0.179	285	0.0063	10.0			
2011	8.9	18.6	27.5	0.206	289	0.0075	10.5			

Changes in WWTF Operations

The WWTF has made the following changes since 2002.

- 1. Implemented carbon dioxide (CO₂) addition plus 400 gallons per day (gpd) of 98 percent sulfuric acid to PC Tank versus prior use of acid only.
- 2. Synthetic flocculent addition only in primary treatment versus prior ferric chloride and anionic flocculent additions.
- 3. Synthetic flocculent and synthetic coagulant additions in secondary treatment versus prior alum and anionic flocculent additions.
- 4. Operation of West and North biotreaters now, versus prior operation of East and Center biotreaters also (1.3 million gallons volume versus 1.9 million gallons of prior biotreater volume).

These changes appear not to have caused any appreciable change in effluent quality based on the average effluent biochemical oxygen demand (BOD) and COD remaining at approximately 8 mg/L and 370 mg/L, respectively, from 2002 through 2011. Recent sampling indicates that the effluent NH₃-N and TKN continue to remain comparable (within 10 percent of each other) indicating near complete hydrolysis of organic nitrogen.

The WWTF still operates at conditions that would promote biological nitrification (Mean Cell Residence Time greater than 30 days, mixed liquor temperatures and dissolved oxygen (DO) concentrations of 80 to 96 degrees Fahrenheit and 1.5 to 4.5 mg/L DO, respectively, effluent alkalinity of greater than 150 mg/L, and effluent orthophosphate-phosphorus concentrations of greater than 0.5 mg/L). The lack of nitrification continues to be due to bio-inhibition to nitrifying bacteria as discussed in Attachment A. This inhibition prevents nitrification of the primary clarifier effluent even after 16-fold dilution with "inhibition free water". This inhibition would also require the secondary clarifier effluent to be diluted 5-fold to promote inhibition free nitrification.

Provinged and Confederation Aggroup. Cloud Work Presant 1977/031 Shar does

Mr. Roy M. Harsch, Esq. Drinker, Biddle & Reath LLP July 8, 2013 Page 5

This finding of significant nitrification inhibition is consistent with our prior evaluations. This inhibition has been largely attributed to the presence of mercaptobenzothiazole in the wastewater. This compound is the building block for the products made at the Emerald plant and has a published nitrification threshold of less than 3 mg/L^1 . The presence of this inhibitor and the complex nature of the Henry Plant influent wastewater render nitrification alternatives for effluent NH₃-N control at the Henry Plant not reliable.

Previously Considered Treatment Alternatives

Numerous treatment alternatives were previously considered for reduction of effluent NH₃-N². All but three of these alternatives were reconsidered. Nitrification alternatives were not reconsidered due to their prior poor economic viability and the continued presence of significant nitrification inhibition, which made these treatment alternatives of questionable reliability. The reconsidered alternatives are listed below, illustrated in Attachment B, redefined in terms of impact and costs in Attachment C, and discussed in terms of reliability in Attachment D.

- Alkaline air stripping of PC Tank contents with off-gas collection and treatment (prior Treatment Alternative No. 1 or No. 1)
- Alkaline air stripping of PVC Tank contents (No. 2)
- Alkaline air stripping of secondary clarifier effluent (No. 3)
- Struvite (NH4MgP04+6H20) precipitation from combined influent (No. 4)
- Breakpoint chlorination of secondary clarifier effluent (No. 5)
- Ion exchange treatment of final effluent (No. 8)
- Ozonation of final effluent (No. 9)

Costs that had been developed in the prior document were scaled by a series of factors to produce equivalent costs for 2011. Emerald provided current costs for labor, electricity, sodium hydroxide, sulfuric acid, and phosphoric acid. Costs for magnesium hydroxide, hydrochloric acid, and chlorine gas were obtained from Brenntag, a national chemical supplier. A cost for resin was obtained from Dow Chemical. The cost of natural gas was taken from an industry average. All remaining costs were updated for inflation using Engineering News Record (ENR) Construction Indices.

After making adjustments for 2011, quantities were scaled based upon loading. All capital costs, equipment costs, and power requirements were updated using the Rule of Six-Tenths³ and the loading corresponding to the alternative. Chemical and resin costs were assumed to be directly proportional to the corresponding loading. Each item was then scaled using a ratio of the loadings from 2011 and 2002. Table 4 below indicates the loading corresponding to each alternative.

 $^{^{\}rm 1}$ Journal of Water Pollution Control Federation, Volume 48, 1976 by M.R. Hockenbury and C.P.L. Grady.

² Ammonia-Nitrogen Treatment Alternatives Support Exhibit developed by Brown and Caldwell on May 17, 2002 and held by Illinois Pollution Control Board.

³ "Six-tenths Factor Applies to Complete Plant Costs", C.H. Chilton, Chemical Engineering, Volume 57, No. 4, page 112, 1959.

Mr. Roy M. Harsch, Esq. Drinker, Biddle & Reath LLP July 8, 2013 Page 6

Table 4. Loading Scales for Treatment Alternatives				
Alternative Number	Loading Used for Scaling			
1	PC Tank Flow Rate			
2	PVC Tank Flow Rate			
3	Effluent Flow Rate			
4	Influent NH ₃ -N			
5	Effluent NH ₃ -N			
8	Effluent Flow Rate, Effluent NH ₃ -N			
9	Effluent TKN			

For alternatives involving stripping (Nos. 1, 2, and 3), the loading used for scaling is flow rate because the amount of aeration and quantity of chemicals are both directly proportional to the volume of water treated. For struvite precipitation (No. 4), the loading used for scaling is influent NH₃-N because NH₃-N is precipitated from the influent as struvite. For breakpoint chlorination (No. 5), the loading used for scaling is effluent NH₃-N because NH₃-N is precipitated from the context of the context of the struvite. For breakpoint chlorination (No. 5), the loading used for scaling is effluent NH₃-N because NH₃-N is removed as nitrogen gas after reacting with chlorine. For ion exchange (No. 8), the loading used for scaling is based upon both effluent flow and effluent NH₃-N. Ion exchange scales with flow because it is based upon the volume of water treated. However, the quantity of hydrochloric acid used for regeneration of the resin scales with effluent NH₃-N. Finally, ozonation (No. 9) scales with effluent TKN because both NH₃-N and organic nitrogen are oxidized by ozone.

A summary of conceptual level comparative capital costs for each of these alternatives is provided in Table 5. The total costs presented in this table are considered accurate to within \pm 50 percent.

Mr. Roy M. Harsch, Esq. Drinker, Biddle & Reath LLP July 8, 2013 Page 7

1

Tí	able 5. Cap	ital Cost Es	timates For 1	reatment Al	ternatives							
0	Upgrade Cost in Millions of Dollars for Treatment Alternative Number											
Cost Components	1	2	3	4	5	8	9					
Pretreatment	0.71	0.13		0.06	M M		72					
Primary Treatment	22				17 3							
Secondary Treatment				855	6 44		77 3					
Terliary Treatment		**	5.7	Ser	0.70	0.77	6.35					
Sub-total	0.71	0.13	5.7	0.06	0.70	0.77	6.35					
Site work/Interface Piping	0.11	0.01	0.43	0.01	0.10	0.12	0.28					
Electrical/Instrumentation	0.27	0.20	0.54	0.18	0.24	0.32	0.69					
Contractor Indirects (8%)	0.06	0.01	0.45	0.00	0.06	0.06	0.51					
Engin./Constr. Mgmt (18%)	0.13	0.02	1.02	0.01	0.13	0.14	1.1					
Performance Bonds (1%)	0.007	0.001	0.057	0.001	0.007	0.008	0.063					
Sub-total	1.3	0.37	8.2	0.26	1.2	1.4	9.0					
Contingency (15%)	0.19	0.06	1.2	0.04	0.19	0.21	1.4					
Total Installed Cost	1.5	0.43	9.4	0.30	1.4	1.6	10.4					

A summary of conceptual level operations and maintenance costs for each of these alternatives is provided in Table 6. The total costs presented in this table are considered accurate to within ± 50 percent.

Mr. Roy M. Harsch, Esq. Drinker, Biddle & Reath LLP July 8, 2013 Page 8

Table 6. Annu	al Operating	and Mainte	nance Cost	Estimates fo	r Treatment	Alternative	s				
0	Annual O/M Costs in Thousands of Dollars for Treatment Alternative Number										
Cost Components	1	2	3	4	5	8	9				
Labor (\$40/hr)	32	32	60	8.0	60	60	30				
Electrical (\$0.039/kWh)	33	18	136	0.2	2	6	886				
Natural Gas (\$0.06/therm)	12	0.0	0.0	0.0	0.0	0.0	0.0				
Chemicals (Plant Costs)	393	3,259	1,428	1,294	1,460	309	471				
Resin Replacement (\$215.50/CF)	0.0	0.0	0.0	0.0	0.0	302	0.0				
Off-Site Disposalª	0.0	0.0	0.0	0.0	0.0	36	0.0				
Maintenance Materials ^b	18	2.5	142	0.8	18	19	159				
Sub-total	488	3,311	1,766	1,303	1,539	733	1,545				
Contingency (10%)	48.8	331	177	130	154	73	155				
Total Annual	536	3,643	1,942	1,433	1,692	806	1,699				

^a Cost of disposing spent regenerant containing 29.7 percent by weight NH_4Cl (8 percent N) assumed to be \$0.14/gallon. Does not include costs of excess sludge disposal from Alternative No. 4.

^bBased on 5 percent equipment costs.

A comparison of alternatives with respect to total annual costs and ammonia removal is provided in Table 7.

Composite .	Total Annual Costs in Thousands of Dollars										
Components	1	2	3	4	5	8	9				
NH3-N Removal, Ibs/day	7	212	449	88	464	464	464				
NH3-N Removal, %	2	45	95	19	98	98	98				
Total Annual Costs											
Capital •	177	52	1131	36	171	196	1248				
0/M b	403	4176	2227	1643	1940	924	1948				
Total	580	4228	3357	1678	2111	1121	3196				
Total, \$/lb NH ₃ -N removed	227	55	20	52	12	6.6	19				

^a Based on a 10-year period, 3.5 percent annual interest and no salvage value.

*Based on 10 year period and 3.0 percent inflation rate.

The minimum total annual cost for a 98 percent reduction in effluent NH₃-N is \$1,121,000 per year at 6.60/lb NH₃-N removed provided under Alternative 8. If 25 percent reduction were provided under Alternative 8, the total annual cost would be \$343,000 per year at a cost of \$8.10/lb NH₃-N as described in Attachment C.

Mr. Roy M. Harsch, Esq. Drinker, Biddle & Reath LLP July 8, 2013 Page 9

New Treatment Technologies

Since 2004, several new treatment technologies have become demonstrated, which could provide effluent NH₃-N reduction at the Henry Plant. However, none of these technologies are as economically viable as the ones discussed above.

CASTion Ammonia Recovery Process (ARP)

This process removes ammonia by combining stripping with ion exchange. The waste stream is first conditioned to volatilize ammonia for capture by vacuum distillation. Subsequently, the waste stream is exposed to an ion exchange resin. This process is more costly to build and operate than the separate alkaline air stripping and ion exchange alternatives considered above.

Ostara Pearl

The Ostara Pearl process recovers nutrients from wastewater, including phosphorus and nitrogen containing compounds, and, subsequently, combines these nutrients with magnesium hydroxide to precipitate struvite. Ostara Pearl is simply struvite precipitation that has been considered above, but under a proprietary name.

Liqui-Cel Membrane

The Liqui-Cel Membrane uses a membrane module to separate ammonia from a waste stream. The ammonia is then converted to ammonium salt. Since stripping is part of the process, the Liqui-Cel Membrane similarly requires a pH of greater than 10. As previously determined with alkaline air stripping, pH control would be required to elevate pH for stripping and lower pH for effluent discharge. Additionally, the Liqui-Cel Membrane requires a temperature of 40 to 55 degrees Celsius. The power requirements to heat the waste stream would be expensive. The overall costs and impact would not be as viable as alkaline air stripping alternatives considered above.

Anammox

Anammox is a biological process that removes ammonia through anaerobic biological treatment. These systems are more subject to process upsets than aerobic biological nitrification that was discounted at the Henry Plant due to the presence of known bio-inhibitors and the complexity of site-wide wastewaters.

Anodic Oxidation

Anodic oxidation is capable of removing ammonia from waste streams by electrochemical oxidation. By applying a current to the wastewater, ammonia is removed by deposition on the anode. In order to achieve anodic oxidation at the Emerald facility, the power cost alone would be at least \$5 million annually. In addition, significant capital would be required to outfit the facility for this process. Finally, this process has only been proven to remove ammonia at the bench-scale; no full-scale facility currently exists.

Please call me at 615-250-1220 to discuss this report at your convenience.

Mr. Roy M. Harsch, Esq. Drinker, Biddle & Reath LLP July 8, 2013 Page 10

Very truly yours,

Brown and Caldwell

J. Howton Flippin

T. Houston Flippin, P.E., BCEE Industrial Wastewater Process Leader

MEM:ter

Attachments (4)

- 1. Attachment A: Nitrification Testing
- 2. Attachment B: Alternative Process Flow Schematics
- 3. Attachment C: Cost Analysis for Treatment Alternatives
- 4. Attachment D: Reliability Comparison

Limitations:

This document was prepared solely for Emerald Performance Materials in accordance with professional standards at the time the services were performed and in accordance with the contract between Emerald Performance Materials and Brown and Caldwell on April 5, 2011. This document is governed by the specific scope of work authorized by Emerald Performance Materials; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by Emerald Performance Materials and other partles and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Attachment A: Nitrification Testing

Technical Memorandum

501 Great Circle Road Suite 150 Nashville, Tennessee 37228 Tel: 615-255-2288 Fax: 615-256-8332

Privileged and Confidential-Attorney/Client Work Product

Prepared for: Emerald Performance Materials

Project Title: Renewal of Adjustment Standard

Project No: 140975

Technical Memorandum

Subject: Nitrification Testing

July 7, 2011 Date:

Mike Strabley, HSE Manager To:

T. Houston Flippin, P.E., BCEE From:

Copy to: Steve McGuire, P.E.

Prepared by:

Michgel Mecredy

Michael Mecredy, Project Engineer

Reviewed by:

Stern Motan

Steve McGuire, Project Manager

Reviewed by: 9. Houston Flippon

T. Houston Flippin, P.E., BCEE, Industrial Wastewater Process Leader

Limitations:

This is a draft memorandum and is not intended to be a final representation of the work done or recommendations made by Brown and Caldwell. It should not be relied upon; consult the final report.

This document was prepared solely for Emerald Performance Materials in accordance with professional standards at the time the services were performed and in accordance with the contract between Emerald Performance Materials and Brown and Caldwell. This document is governed by the specific scope of work authorized by Emerald Performance Materials; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by Emerald Performance Materials and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Technical Memorandum

Section 1Introduction

1.1 Background

The combined wastewater generated at the Emerald Performance Materials- Henry Plant has historically contained high concentrations of Total Kjeldahl Nitrogen (TKN) and ammonia-nitrogen (NH₃-N), as well as a known nitrification-inhibiting compound, mercaptobenzothiazole (MBT). This known inhibitor is the compound that serves as the foundational building block of essentially all products at the Henry Plant. Several bench-scale tests have previously been performed to evaluate the viability of nitrification of both the principal wastewaters (PVC Tank and PC Tank discharges) that comprise the primary clarifier influent and the secondary clarifier effluent. On all previous occasions, nitrification has been inhibited, despite sufficient nutrients, and carefully controlled pH, alkalinity, orthophosphate-phosphorus (PO₄-P) and dissolved oxygen (DO) concentrations.

Emerald personnel collected the following samples on May 30, 2011.

- One-gallon sample of Return Activated Sludge (RAS)
- One-gallon sample of Primary Effluent
- · One-gallon sample of Secondary Effluent
- · One-gallon sample of PC Tank

All samples, except RAS, were kept under refrigeration until treatability testing was performed. The RAS was mixed and aerated until testing, and deionized water was added, as necessary, to maintain volume.

1.2 Scope of Work

In order to determine the extent to which the wastewaters are inhibitory to nitrification, three Fed Batch Reactor (FBR) tests were performed. Table 1 below provides the general setup for the three tests.

Table 1. Testing Set-up								
Test	Туре	Biomass	Wastewater					
Test 1	FBR	Nitrifiers *	Tap Water with NH4CI					
Test 2	FBR	Nitrifiers ^a	Secondary Effluent					
Test 3	FBR	RAS a + Nitrifiers a	Primary Effluent					

* Washed with Total Dissolved Solids (TDS)-adjusted tap water to remove any soluble inhibitory compounds,

The first test was a control containing pure culture nitrifiers designed to obtain an uninhibited nitrification rate. The second test investigated the extent to which the secondary effluent is inhibitory to nitrification. The third test evaluated the extent to which the primary effluent is inhibitory to nitrification.

Section 2Results

2.1 Characterization

The samples provided by Emerald Performance Materials were characterized and the results are shown below in Table 2.

Nitrification Testing

Table 2. Characterization of Samples						
Parameter	Primary Clarifier Effluent	Secondary Clarifier Effluent				
TCOD, mg/L	1,653	350				
FCOD, mg/L	1260	Not Analyzed				
TSS, mg/L	155	14				
VSS, mg/L	137	8				
NH ₃ -N, mg/L	49	113				
P04-P, mg/L	0	0				
Alkalinity, mg/L as CaCO3	1,000	500				

A comparison of the NH₃-N results indicates that significant quantity of organic nitrogen is converted to NH₃-N at the Henry Plant, which has always been the case. The effluent alkalinity is sufficient to support nitrification and absent inhibition, with an effluent alkalinity much greater than 150 mg/L. The primary and secondary clarifier effluents contained inadequate PO₄-P to support unhindered biological treatment on May 30, 2011. Samples were supplemented with phosphorus prior to testing. There was a higher nitrogen loading in the secondary effluent.

2.2 Fed Batch Reactor (FBR) Testing

During a FBR test, a wastewater is fed to a batch reactor with a fixed biomass population. This configuration allows for the fraction of wastewater in the beaker to increase over time. Thus, the nitrification rate as well as the fraction of wastewater inhibitory to the biomass can be ascertained from the results.

Alkalinity was added, as necessary, to the wastewaters as sodium bicarbonate (NaHCO₃) to provide sufficient alkalinity for complete nitrification. Dipotassium phosphate (K_2HPO_4) was added to provide a total phosphorus concentration of 30 mg/L. The pH in all tests was maintained between 7.0 and 8.5. The DO was maintained above 2.0 mg/L.

The average nitrification rate observed for the control reactor was 0.61 mg N removed per mg volatile suspended solid (VSS) nitrifier per day (mg/mg-day). A nitrification rate in the range of 0.6 mg/mg-day to 1.0 mg/mg-day is typically observed when nitrifying bacteria are uninhibited. Figure A-1 below illustrates the control nitrification rate during the course of the test.

Brown AND Caldwell

Poyalbgest and Contribution Attorney? Cleant Versik Friedrich

Use of realizing on the states of a type, to the waither, it is each of the beginning of the decomposition of the states of 0.681 pears is a PACID uts Vemantial Performance Materials \1400 (Elsenerate Renowal of Adjustment Spandard) (Elsendates \1400 (081 pears is a

Nitrification Testing

Figure A-1: Control Nitrification Rate as a Function of Time

In contrast, the nitrification rate for the secondary effluent test peaked at 0.46 mg/mg-day at 21 percent secondary clarifier effluent contribution by volume. At 0.46 mg/mg-day, the test may have already been exhibiting inhibition. The nitrification rate dropped during the remainder of the test and reached 0 mg/mg-day by the end of the test when the secondary clarifier effluent contribution reached 95 percent by volume contribution. Figure A-2 below illustrates the nitrification rates during the course of the test.

Brown AND Caldwell

Privileged and Confriction Attorney/Clinet Work Product.

Use of schedules on this shared is subject to the finitizions operative at the beginning of this document. Profile insylection Forthingers is Mittenals/140975 Energial Removal of Adjustment Standard/Deliverables/1807081386/ cross

Nitrification Testing

Figure A-2: Nitrification Rate as a Function of Secondary Effluent Flow Contribution

Figure A-2 demonstrates a downward trend toward a zero nitrification rate and indicates that secondary clarifier effluent is inhibitory to nitrification even at low wastewater contribution.

Demonstrating even higher levels of inhibition than the secondary effluent, the primary clarifier effluent test produced a nitrification rate of 0.006 mg/mg-day at 6 percent by volume contribution. In order to corroborate this result, 20-fold washed RAS was combined with pure culture nitrifiers, provided NH₃-N as ammonium chloride in the presence of excess alkalinity and phosphorus, and allowed to aerate overnight. Even with no primary effluent, the observed nitrification rate was 0.06 mg/mg-day. Lastly, the TKN hydrolysis to NH₃-N during the primary clarifier effluent biological treatment test was only 34 percent versus near complete hydrolysis typically being achieved. This may have been due to the test being conducted on a RAS sample that was not freshly collected. Consequently, the FBR test of the primary clarifier effluent likely exhibited stronger inhibition than would have with a freshly collected RAS sample. The primary clarifier effluent effluent exhibited nitrification inhibition in testing at less than 15 percent by volume contribution versus less than 6 percent in this test.

2.3 Summary

Based upon the performed FBR testing, both the primary and secondary clarifier effluents continue to be significantly inhibitory to nitrification. This finding kept Brown and Caldwell from considering nitrification as a reliable method of effluent NH₃-N control in the associated report.

Brown An Caldwell

Privilegen and Confidence: Attornsy/Cleant Work Product. Use of contents on this sheet is subject to the limitations specified at the beginning of the decument. PryCleants/Emercing Performance Materials/140975 Emeraid Renewal of Adjustment Standard/Distiverobles/18070813Har dock

Attachment B: Alternative Process Flow Schematics

Attachment C: Cost Analysis for Treatment Alternatives

Summary of Cost Analysis for Providing Incremental Ammonia-Nitrogen Removal at the Emerald Performance Materials Facility

	1					-		1										
		PC Tank	PC Tank	PVC Tank	PVC Tank			Effluent	Effluent	Effluent		1				-		
		Stripping w/	Stripping w/	Stripping w/o	Stripping w/o	Effluent	Effluent	Stripping No	Stripping No	Stripping No	Struvite	Struvite	8		Effluent lon	Effluent Ion	Effluent lon	1
		Off-gas 2%	Off-gas 1%	Off-gas 45%	Off-gas 22%	Stripping w/	Stripping No	Off-gas 75%	Off-gas 50%	Off-gas 25%	Precipitation	Precipitation	Effluent BP	Effluent Ion	Exchange 75%	Exchange 50%	Exchange 25%	1
WWTF Component	Basis	Removal	Removal	Removal	Removal	Off-gas	Off-gas	Removal	Removal	Removal	19% Removal	9% Removal	Chlorination	Exchange	Removal	Removal	Removal	Ozonation
Alternative No.		1	1	2	2	3	3	3	3	3	4	4	5	8	8	8	8	9
Additional	-	-		-	-						· · · · · · · · · · · · · · · · · · ·	-						
Operations/Maintenance Labor	- 1				(1.1												
Labor Hours		800	800	800	800	1500	1300	1300	1000	1000	200	200	1500	1500	1500	1500	1500	750
Annual Cost	¢40/br	622,000	000	(22 000	000	\$60,000	\$52,000	\$52,000	\$40,000	\$40,000	\$200	\$200	\$60,000	\$60,000	\$60,000	\$60,000	\$60,000	\$20,000
Annuar Cost	\$40/11	\$52,000	\$52,000	\$52,000	\$32,000	\$00,000	\$52,000	\$32,000	\$40,000	\$40,000	\$8,000	50,000	\$00,000	300,000	\$00,000	\$00,000	300,000	\$30,000
Electrical Usage				-														
hp		128	128	69	69	532	493	439	293	293	1	1	7	24	18	12	6	3,475
kwh		834,694	834,694	447,826	447,826	3,476,930	3,221,743	2,870,860	1,913,907	1,913,907	5,223	5,223	44,159	159,492	119,619	79,746	39,873	22,709,729
Annual Cost	\$0.039/kwh	\$32,553	\$32,553	\$17,465	\$17,465	\$135,600	\$125,648	\$111,964	\$74,642	\$74,642	\$204	\$204	\$1,722	\$6,220	\$4,665	\$3,110	\$1,555	\$885,679
		-															1	1
Maintenance Materials											-							1
Low End Equinment Cost		\$250.228	\$350 738	\$50.462	\$50.462	\$7.838.660	\$1 703 196	\$1 366 223	\$851 598	\$510.959	\$16 552	\$16 552	\$3/19 871	\$382.801	\$306.241	\$779 681	\$114 840	\$3 173 151
Low End Equipment Cost	E0/ of	\$555,250	3333,230	200,402	JJ0,402	\$2,050,000	21,703,130	91,500,225	2051,550	\$510,555	Ş10,352	\$10,552		\$302,001	Ş300,241	<i>\$225,001</i>	, , , , , , , , , , , , , , , , , , ,	<i>\$3,173,131</i>
	5%01																	
	Equipment				1						4			4		4	4	
Annual Cost	Costs	\$17,962	\$17,962	\$2,523	\$2,523	\$141,933	\$85,160	\$68,311	\$42,580	\$25,548	\$828	\$828	\$17,494	\$19,140	\$15,312	\$11,484	\$5,742	\$158,658
		Y				1-		2				1						
Chemical Costs			1															
50% NaOH	\$500/ton	\$266,350	\$152,200	\$3,173,310	\$1,813,320	\$868,646	\$868,646	\$868,646	\$434,323	\$217,161	\$0	\$0	\$1,035,870	\$259,915	\$194,937	\$129,957	\$64,978	\$470,529
98% H2504	\$190/ton	\$126,502	\$72,295	\$86,133	\$49,224	\$559,512	\$475,585	\$475,585	\$279,756	\$139,878	\$0	\$0	\$0	\$0	\$0	\$0	ŚO	\$0
75% H3PO4	\$1.168/ton	\$0	\$0	\$0	ŚŊ	ŚŊ	\$0	ŚŊ	ŚŊ	\$0	\$977 121	\$977 121	\$0	\$0	50	\$0	50	\$0
C29(Ma(OU))2	\$1,100/ton	00	00	0 ,	00	00 ¢0	00	00	÷0	00	\$216.420	¢1E0 01E	00	÷0	÷0	÷0	00	\$0
62% Mg(OH)2	\$430/ton	\$0	50	ŞU 40	\$0	ŞU	\$0	\$0	\$U \$0	\$0	\$310,450	\$158,215	\$0	ŞU	\$U	30	04	
38% HCI	\$150/ton	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$49,012	\$36,759	\$24,506	\$12,253	\$0
Chlorine Gas	\$560/ton	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$423,581	\$0	\$0	\$0	\$0	\$0
Annual Cost		\$392,852	\$224,495	\$3,259,443	\$1,862,544	\$1,428,157	\$1,344,231	\$1,344,231	\$714,079	\$357,039	\$1,293,551	\$1,135,336	\$1,459,451	\$308,927	\$231,696	\$154,463	\$77,231	\$470,529
) = 0						· · · · · · · · · · · · · · · · · · ·			1)- · · · · · · · · · · · · · · · · · · ·
Annual Resin									1									
Replacement	\$215.50/CF	ŚO	\$0	\$0	\$0	\$0	ŚO	ŚO	\$0	ŚO	ŚO	ŚO	\$0	\$302,080	\$226,561	\$151,040	\$75,520	\$0
Annual Off-site Disposal	\$0.14/gal	50	50	50	\$0	Śŋ	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$36,445	\$27,333	\$18,222	\$9,111	\$0
Natural Gas Cost	\$0.06/therm	\$12.274	\$12.274	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
A must Cost	- 90.00/ merm	¢12,274	¢12,274	0,	00	00	00	00	00	00 ¢0	00	00	00	6220 F2F	C252 804	\$160.262	C04 C21	0 0
Annual Cost		\$12,274	\$12,274	ŞU	ŞU	Şυ		ŞU	ŞU		50	ŞU	οç	\$336,525	\$255,654	\$105,202		50
					1				1								1	
Subtotal Annual Costs		\$487,641	\$319,284	\$3,311,431	\$1,914,532	\$1,765,691	\$1,607,039	\$1,576,505	\$871,301	\$497,230	\$1,302,582	\$1,144,367	\$1,538,667	\$732,813	\$565,567	\$398,318	\$229,160	\$1,544,866
Contingency (10%)		\$48,764	\$31,928	\$331,143	\$191,453	\$176,569	\$160,704	\$157,651	\$87,130	\$49,723	\$130,258	\$114,437	\$153,867	\$73,281	\$56,557	\$39,832	\$22,916	\$154,487
			1															6-
Total Annual O/M Costs,			1										1		1			
\$/year		\$536,405	\$351,212	\$3,642,574	\$2,105,986	\$1,942,260	\$1,767,742	\$1,734,156	\$958,431	\$546,953	\$1,432,840	\$1,258,804	\$1,692,533	\$806,094	\$622,124	\$438,150	\$252,076	\$1,699,353
Total Annual O/M Costs	10 years, 3																1	
¢hioar	norcont	\$614.028	\$402 625	\$4 175 803	\$2 111 277	\$2 226 583	\$2 026 519	\$1 988 015	\$1 098 734	\$627.020	\$1 642 591	\$1 //3 078	\$1 940 300	\$924 097	\$713 195	\$502.290	\$288.976	\$1 948 117
Tabal Assurat Caraital	10 users 2.5	\$014,320	Ş402,02J	24,17,000	22,414,277	72,220,505	\$2,020,515	\$1,500,015	\$1,050,754	2027,020	71,042,331	J1,443,078	J1,J40,J00	,0 <i>51</i>	7713,133	\$302,230	\$200,570	\$1,5+0,117
Total Annual Capital	10 years, 3.5				444.444			4.00.000	4477.000	4150.010	407 500	105 500	4170.010	4100.000		400.000	452.055	44.040.004
Costs, \$/year	percent	\$176,947	\$176,947	\$51,810	\$51,810	\$1,130,/31	\$507,344	\$422,980	\$275,292	\$172,916	\$35,629	\$35,629	\$170,618	\$196,429	\$122,894	\$88,380	\$53,866	\$1,248,031
								A					1		1			
Capital Costs	·	\$1,471,595	\$1,471,595	\$430,881	\$430,881	\$9,403,844	\$4,219,377	\$3,517,761	\$2,289,492	\$1,438,071	\$296,315	\$296,315	\$1,418,961	\$1,633,625	\$1,022,064	\$735,022	\$447,982	\$10,379,378
			1												· · · · · · · · · · · · · · · · · · ·			1
									-									
Tatal Annual Cast Chiana		6701 974	6570 572	64 227 612	62 ACC 00C	62 257 214	67 522 062	\$2,410,006	\$1 274 02E	6700.026	\$1 679 330	¢1 479 707	\$2,110,019	¢1 120 526	6026 000	\$500.670	\$242 842	\$2 106 1/18
Total Annual Cost, \$7year		\$791,874	\$579,572	\$4,227,015	\$2,400,080	\$5,557,514	\$2,555,602	\$2,410,990	\$1,574,025	\$755,550	\$1,076,220	\$1,476,707	\$2,110,916	\$1,120,520	\$650,050	\$390,070	\$342,042	\$5,150,148
Average NH3-N Removal,		1.						1									1.00	
lb/day	A REPORTED A	7	7	212	106	449	449	337	225	112	88	102	464	464	348	232	116	464
Average NH3-N Removal,															1			
%		1.5	1.5	44.8	22.4	95.0	95.0	71.3	47.5	23.8	18.6	21.5	98.0	98.0	73.5	49.0	24.5	98.0
Total. \$/lb NH3-N															Sec		1	
Removed		309 93	226.84	54.63	63 74	20.47	15.45	19.60	16.76	1951	52.25	39.79	12.48	6.62	6.59	6.98	8 1 1	18.89
Nemoveu		505.55	220.04	CO'LC	03.74	20.47	10,40	10.00	10.70	10.01	32.23	55.75	12.70	0.02	0.00	L 0.00	L 0.11	10.05

Privileged and Confidential-Attorney/Client Work Product P:\Clients\Emerald Performance Materials\140975 Emerald Renewal of Adjustment Standard\Deliverables\Components\Attachment C NH3 CostsRev.xlsx

Attachment D: Reliability Comparison

Privilaged and Confidential Attomog/Client Work Product Pt/Clients/Elinerald Performance Materiols/140975 Emerald Renewal of Adjustment Standard;Deliverables/LR070813Har doox

Comparison of Projected Removals and Reliability of Effluent NH₃-N Removal Processes for the Emerald Performance Materials Wastewater Treatment Facility

Process			Effluent NH ₃ -N Removal
	(Average %)	Reliability Rating ¹	Comments
PC Tank Stripping with Off-gas Control	30	8	Involves adding caustic, surface aerator, oversized withdrawal fan, off-gas collection, and thermal oxidation of off-gas. Acid addition in primary system will be required to lower pH to 9.0 s.u. Off-gas collection and treatment are needed for VOC control. Performance will vary as volatile amine content varies in wastewater. Average removals of 0 to 30 percent could be achieved by varying the size of the surface aerator placed in the tank. Will increase effluent TDS.
PVC Tank Stripping without Off-gas Control	74	7	Involves adding caustic and surface aerator to PVC tank contents. Acid addition in primary system will be required to lower pH to 9.0 s.u. Simple to operate. Strong foaming potential in PVC Tank, which would reduce effectiveness. Performance will vary based on production discharges of NH ₃ -N and volatile amines and NH ₃ -N returned in sludge dewatering filtrate and tertiary filter backwash. Removals of 0 to 74 percent could be achieved by varying the size of the surface aerator placed in the tank. Will increase effluent TDS.
Effluent Stripping with Off-gas Control	95	7	Involves pumping sand filter effluent through two packed towers in series. Caustic is added to increase pH to 11.5 s.u. and acid is added to lower the treated effluent pH to 8 s.u. Off-gas is directed to an acid scrubber for recovery of (NH ₄) ₂ SO ₄ . Scrubber discharge would be disposed off-site. Complex to operate. Equipment must be housed in heated building to prevent freezing. Fouling of tower media with precipitants is anticipated. Removals of 75 to 95 percent would be achieved by treating the whole effluent through different sized columns. Removals of 25 to 75 percent would be achieved by treating only a portion of the final effluent. Will increase effluent TDS.
Effluent Stripping without Off-gas Control	95	8	Same as above but without off-gas collection and treatment. NH_3-N would be discharged to atmosphere. Will increase effluent TDS.
Struvite Precipitation	34	6	Involves feeding magnesium hydroxide and phosphoric acid to existing primary treatment system. Simple to operate; however, the precipitant is prone to foul pumps and piping. Removal could be varied between 22 and 34 percent depending upon the quantity of magnesium hydroxide added. Performance will

Phylocity Structure Conformation Matchies 140875 EmviralD Renewal of Adjustment Stangard Deficience (URLTOSESHall dock

				vary strictly as a function of influent NH ₃ -N load. Will increase effluent TDS.
Effluent Breakpoint Chlorination	. 9	98	9	Involves routing secondary clarifier effluent through chlorination step prior to tertiary filtration. Caustic is fed to maintain pH control. Reliable process. Creates safety concerns and may form chlorinated organics. Very complex system requiring active monitoring and safety controls. Will increase effluent TDS.
Effluent Ion Exchange	9	98	6	Involves pumping sand filter effluent through two resin columns in series. Caustic is added to neutralize effluent from strong acid resin treatment. Resins would be regenerated daily using acid, and spent regenerant (high cation content NH ₄ CL solution) would be disposed off-site. Complex to operate. Equipment must be housed in heated building to prevent freezing. Fouling of media with precipitants and biomass is anticipated. Removals of 25 to 75 percent would be achieved by treating only a portion of the whole effluent. Should have little net effect on effluent TDS.
Effluent Ozonation	9	98	8	Involves routing secondary clarifier effluent through ozonation step prior to tertiary filtration. Caustic is fed to maintain pH control. Very complex system requiring active monitoring and safety controls. Will increase effluent TDS.

¹ Reliability Rating based on a relative assessment of mechanical and process performance reliability to achieve the average percent removal (10 being highest reliability). Reliability means the ability of the treatment process to achieve the predicted effluent ammonia-nitrogen (NH₃-N) concentrations on a routine basis.

MICROBAC[®]

November 22, 2013

Emerald Performance Materials Attn: Kellie Staab 1550 County Road 1450 N Henry, IL 61537

RE: Biomonitoring Results COA Number: 3110636 & 3110864

Dear Ms. Staab:

Enclosed are your biomonitoring results for Emerald Performance Materials. A summary of the findings is presented below.

Test Concentrations	3.125, 6.25, 12.5, 25 and 50%					
Permit Limit:	Acute Toxic Unit					
Sample Collection Date/Time	11/11/13 07:53 & 11/13/13 07:59					
Outfall #	Outfall 001					
Test Organism	Ceriodaphnia dubia	Pimephales promelas				
Test Type	Acute 48-Hour Definitive	Acute 96-Hour Definitive				
LC ₅₀ Result	16.49%	16.79%				

If you have any comments or questions concerning the enclosed report, please do not hesitate to contact me at 859-276-3506.

Sincerely, prla ípa M

Lisa Martin Biology Section Supervisor

Enclosures Emerald01

> Microbac Laboratories, Inc Louisville | Lexington | Paducah | Hazard | Evansville 3323 Gilmore Industrial Blvd. | Louisville, KY 40213 | 502.962.6400 p | 502.962.6411 f www.microbac.com

Test Type: Acute Definitive

TOXICITY TEST REPORT SHEET COA NUMBERS: 3110636 & 3110864

1)	Facility/Discharger: Emerald Performance Materials	Report Date: 11/22/13							
2)	Address: 1550 County Road 1450 N Henry, IL 61537	Address: 1550 County Road 1450 N Henry, IL 61537							
3)	Permit #: IL0001392-1								
4)	Receiving Stream: Illinois River								
5)	Facility Contact: Kellie Staab	Phone # : (309) 364-9411							
6)) Testing Lab Name: Microbac Laboratories, Inc Lexington Division								
7)	') Lab Contact: Ms. Lisa Martin Phone #: (859) 276-3506								
8)	Outfall(s) Tested: Outfall 001								
9)	Average daily flow (MGD): 599.5								
10)	Test Species: #1 Ceriodaphnia dubia	#2 Pimephales promeles							
11)	Species Age: #1 < 24 hours	#2 4 days							
12)	Organism Source: #1 In-house culture	#2 In-house culture							
13)	Acclimation Procedure: #1 N/A	#2 N/A							
14)	Test Conditions: (Static, Static-Renewal): Static, Static	-Renewal							
15)	Dilution Water Type (synthetic, receiving stream): Rec	eiving Water							

- 16) Aeration? (Before/During Test): No
- 17) Dechlorination?: No Original Chlorine Level: 0.06 mg/L
- 18) Reference Toxicant Test Results:

Species	Date	Time	Duration	Toxicant	Results (LC50)
Ceriodaphnia dubie	11/04/13	11:30	48 hours	NaCl	2041 mg/L
Pimephales promelas	11/05/13	09:00	48 hours	NaCl	7549 mg/L

TABLE 1 ACUTE TOXICITY TEST SAMPLING DATA

\$	Sampling Summary for Acu	te Toxicity Tests	
Sampling Location & Description	Sample Co		
	Beginning MM/DD/Time	Ending MM/DD/Time	Conditions
Final Effluent: Outfall: Outfall 001 Type (Grab/Composite): Composite Volume Collected: 1 gallon	NA	11/11/13 07:53	Temp. = NR
Upstream Station: Waterbody: Illinois River Station No.: N/A Type (Grab/Composite): Grab Volume Collected: 2 gallons	N/A	11/11/13 07:26	Receiving stream conditions: Flow: NR Height: NR Turbidity: NR
Additional Stations (If needed): Waterbody: N/A Type (Grab/Composite): N/A Volume Collected: N/A	N/A	N/A	N/A
Additional Stations (If needed); Waterbody: N/A Type (Grab/Composite); N/A Volume Collected: N/A	N/A	N/A	N/A
Waterbody: N/A Type (Grab/Composite): N/A Volume Collected; N/A	N/A	N/A	N/A

ł

TABLE 2 TOXICITY TEST CONDITIONS

I

Ì

	Summary of Toxic Ceriodaphnia dubia Acut Method: EPA	ity Test Conditions a 48-Hour Definitive Test 821-R-02-012
1.	Test Species and Age:	<i>Ceriodaphnia dubia</i> ; < 24 hours
2.	Test Type and Duration:	Static; 48-Hour
3.	Test Dates:	11/12/13 – 11/14/13
4.	Test Temperature (°C):	25 ± 1
5,	Light Quality:	Ambient laboratory illumination (cool white)
6,	Photoperiod:	16 hours light, 8 hours dark
7.	Feeding Regime:	Not fed
8.	Size of Test Vessel:	30 mL
9.	Volume and Depth of Test Solutions:	15 mL; 2.3 cm
10.	No. of Test Organisms per Test Vessel:	5
11.	No. of Test Vessels per Test Solution:	4
12.	Total No. of Test Organisms per Test Solution:	20
13.	Test concentrations (as percent by volume effluent):	3.125, 6.25, 12.5, 25 and 100%
14.	Renewal of Test Solutions:	Not renewed
15.	Dilution and Primary Control Water:	Receiving stream water
16.	Secondary Control Water:	Reconstituted water
17.	Aeration? Before/During Test:	None required
18.	Endpoints Measured:	Death and immobility
19.	If secondary control water was used as a dilutent due to toxicity in primary control water, indicate number of consecutive tests conducted with alternative dilutent:	N/A

TABLE 3 TOXICITY TEST CONDITIONS

	Summary of Toxicity Test Conditions <i>Pimephales promelas</i> Acute 96-Hour Definitive Test Method: EPA 821-R-02-012					
1.	Test Species and Age:	Pimephales promelas; 4 days				
2.	Test Type and Duration:	Static-Renewal; 96-Hour				
З.	Test Dates:	11/12/13 – 11/16/13				
4.	Test Temperature (°C):	25 ± 1				
5.	Light Quality:	Ambient laboratory illumination (cool white)				
6.	Photoperiod:	16 hours light, 8 hours dark				
7.	Feeding Regime:	fed at 48 hours				
8.	Size of Test Vessel:	27 0 mL				
9.	Volume and Depth of Test Solutions:	200 mL; 6 cm				
10.	No. of Test Organisms per Test Vessel:	10				
11.	No. of Test Vessels per Test Solution:	2				
12.	Total No. of Test Organisms per Test Solution:	20				
13.	Test concentrations (as percent by volume effluent);	3.125, 6.25, 12.5, 25 and 100%				
14.	Renewal of Test Solutions:	renewed at 48 hours				
15.	Dilution and Primary Control Water:	Receiving stream water				
16.	Secondary Control Water:	Reconstituted water				
17.	Aeration? Before/During Test:	None required				
18.	Endpoints Measured:	Death and immobility				
19.	If secondary control water was used as dilutent due to toxicity in primary control water, indicate number of consecutive tests conducted with alternative dilutent:	N/A				

L

ł

TABLE 4							
ACUTE	TOXICITY	TEST	RESULTS				

Results	of a <i>Ceriodaphnia dul</i> 11/12/13 – 11/14	bia 48-Hour Static 4/13 Using Effluen	Acute Toxicity Te Acute Toxicity Te	st Conducted		
Test Solutions Primary Control/ Dilution Water Secondary Control 3.125% Effluent 12.5% Effluent 25% Effluent	Cumulative Pe (Cumulative Pe	ercent Mortality rcent Affected) ^a	LC ₅₀ Values			
	24-Hr	48-Hr	24-Hr		48-hr	
Primary Control/ Dilution Water	0 (0)	0 (0)	<25%		16.49%	
Secondary Control	0 (0)	0 (0)	LC	50 Confidence Li	mits	
3.125% Effluent	0 (0)	0 (0)	Limit	24-hr	48-hr	
6.25% Effluent	5 (5)	5 (5)	LL UL	N/A N/A	14.99 18.15	
12.5% Effluent	0 (0)	5 (5)				
25% Effluent	100 (100)	100 (100)		LL = Lower Limi UL = Upper Lim	t it	
50% Effluent	100 (100)	100 (100)				
Near-Field Sample	N/A (N/A)	N/A (N/A)	Method(s) Use Confidence Lin Karber	d to Determine L tit Values: Trimn	C ₅₀ , EC ₅₀ and ned Spearman-	
			and a handwood alo			

^a Cumulative percent affected is the total percentage of test organisms observed dead, immobile, exhibiting loss of equilibrium or other defined endpoints (specify below)

Resi	ults of a Pi	mephalos 11/12/13	s promela — 11/16/1	s 96-Hou 3 Using	ur Static Acu Effluent fron	ute Toxicity n Outfall 00	Test Cond	ucted	
Test Solutions	Results of a Pimephales prome/as 96-Hour Static Acute Toxicity Test C 11/12/13 – 11/16/13 Using Effluent from Outfall 001 LC ₅₀ Vi Currulative Percent Mortality (Cumulative Percent Affected) ^a LC ₅₀ Vi Ons LC ₅₀ Vi 24-Hr 48-Hr 72-Hr 96-Hr 24-Hr 48-hr O O Complete Affected) ^a O 0 Complete Affected) ^a O O Complete Affected) ^a Imate O O	LC ₅₀ Value	alues						
	24-Hr	48-Hr	72-Hr	96-Hr	24-Hr	48	-hr	72-Hr	96-Hr
Primary Control/ Dilution Water	0 (0)	0 (0)	5 (5)	5 (5)	>100% <25% <25% 1		16.79%		
Secondary Control	0 (0)	0 (0)	0 (0)	0 (0)		LC ₅₀ ((EC ₅₀ (Confidence Confidence	Límits Limits)	
3.125% Effluent	0 (0)	5 (5)	10 (10)	15 (15)	Limit	24-hr	48-Hr	72-Hr	96-Hr
6.25% Effluent	0 (0)	0 (0)	0 (0)	10 (10)		N/A N/A	N/A N/A	N/A N/A	N/A N/A
12.5% Effluent	0 (0)	5 (5)	10 (10)	15 (15)					
25% Effluent	55 (55)	100 (100)	100 (100)	100 (100)		ւլ Մե	= Lower Li = Upper L	mit imłt	
50% Effluent	100 (100)	100 (100)	100 (100)	100 (100)					_
Near-Field Sample	N/A (N/A)	N/A (N/A)	N/A (N/A)	N/A (N/A)	Method(s) Confidenc Karber) Used to D ce Limit Val	etermine Le ues: : Trimi	C ₅₀ , EC ₅₀ a med Spear	nd man-
^a Cumulative percent	affected is	s the tota	l percenta	age of tes	t organisms	s observed	dead, Imm	bile, exhib	iting loss

TABLE 5 ACUTE TOXICITY TEST RESULTS

of equilibrium or other defined endpoints (specify below)

ADDITIONAL TOXICITY TEST INFORMATION

- Submit copies of all bench sheets and statistical calculations/printouts obtained during the test(s). Data must be presented in tabular form and must include all physical and/or chemical measurements recorded during the test (e.g. temperature, conductivity, total residual chlorine, dissolved oxygen, etc.). See appendix.
- 2) Methods/Instrumentation used in chemical analysis:

Dissolved Oxygen; SM 4500 O-G Using a Extech Model 407510

pH: SM 4500 H+ Using a Fisher Accumet AB15.

Conductivity: SM 4500 2510 B Using a Fisher Accumet AB30.

Aikalinity: Titrimetric Method SM 2320A

Hardness: SM 2340B Using an ICP Analyzer

Chlorine: Method SM 4500 CL-G

EPA Acute Manual Edition and Date: EPA 821-R-02-012 5th Edition October 2002

3) Indicate below any other relevant information that may aid in the evaluation of this report. Include any deviations from EPA methodology that were necessary for these tests as well as any sample manipulations which were performed, such as aeration, dechlorination with sodium thiosulfate, etc. and the justification for such manipulations or deviations. Attach additional pages as needed. None performed

Signature of person filling out form

Section Supervisor

Dala

Lisa Martin Name (typed or printed)

APPENDIX

CHEMICAL ANALYSIS REPORT ACUTE TOXICITY BENCH SHEETS CHAIN OF CUSTODY RECORD REFERENCE TOXICANT CONTROL CHART

Microbac Laboratories, Inc.

KENTÜCKYTESTING LABORATORY DIVISION 3323 Gilmore Industrial Blvd. Louisville, KY 40213 502.962.6400 Fax: 502.962.6411 Evansville 812.464.9000 | Lexington 859.276.3506 | Paducah 270.898.3637 | Hazard 606.487.0511 Member

Chemical, Biological, Physical, Molecular, and Toxicological Services

CERTIFICATE OF ANALYSIS

	3110636		
Emerald Performance Materials		Date Reported	11/20/2013
Brenda Abke		Date Duc	11/21/2013
550 County Road 1450 North		Date Received	11/12/2013
Henry IL, 61537		Customer #	E6920
		Customer P.O.	HE-40047185-UB

WET Testing

Analysis	OOC Oualifler	Result Units	Min Max	Method	Rpt Limit	Date	Time	Tech
Sample: 01 Effluen Sampled By Customer	t - Composite					Sampled	11/11/2013	3 @ 7:53
Alkalinity, Total as CaCO3		190 mg/L		SM 2320B	5.0	11/18/2	013-18:05	лс
Chlorine, Total Residual	HI	0.060 mg/L		\$M 4500 CI G	0.020	11/12/2	013 17:07	KEM
Nitrogen, Ammonia		24 mg/L		SM 4500 NH3 G	2,5	11/19/2	013 15:11	ЛÇ
Toxicity, Acute - C. dubia		See TU Attached		EPA 821-R-02-012		11/12/2	013 10:35	KEM
Toxicity, Acute - P. prometas		See TIJ Attached		EPA 821-R-02-012		11/12/2	013 10:53	DZW
Hardness Pkg, By ICP								
Calcium		56 mg/L		EPA 200.7	0,50	11/14/2	013 12:38	FML
Magnesiom		24 mg/L		EPA 200.7	0,20	11/14/2	013 12:38	EML
Hardness, Total as CaCO3		240 mg/L		SM 2340B	1.2	11/14/2	013 12:38	EML
Sample: 02 River W Sampled By Customer	/ater					Sampled	11/11/2013	9@ 7: 26
Alkalinity, Total as CaCO3		160 mg/L		SM 2320B	5 0	11/18/20	013 18:05	JLĆ
Chlorine, Total Residual	111	0.050 mg/L		SM 4500 CI G	0.020	11/12/20	013 17:02	KBM
Nittogen, Ammonia		<0.25 mg/L		SM 4500 NH3 G	0.25	11/18/20	13 19:16	лс
Hardness Pkg. By ICP								
Calcium		59 mg/L		EPA 200.7	0.50	11/14/20)13-13:14	EML
Magnesium		24 mg/L		EPA 200.7	0.20	11/14/20	13 13:14	EML
Hardness, Total as CaCO3		250 mg/L		SM 2340B	1.2	11/14/20)13 13;14	EML

Qualifier Definitions

H1 Sample received outside of holding time for these analytes.

The following analyses were not run at of the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

Laboratory	<u>Analysis</u>	Method
Microbae Laboratories, Kentucky Testing Laboratory, Lexington Site	Chlorine, Total Residual	8M 4500 CI G
	Toxicity, Acute - P. promelas	EPA 821-R-02-012
	Toxicity, Acute - C. dubia	EPA 821-R-02-012

I

Microbac Laboratories, Inc.

KENTUCKYTESTING LABORATORY DIVISION 3323 Gilmore Industrial Blvd. Louisville, KY 40213 502.962.6400 Fax: 502.962.6411 Evansville 812.464.9000 | Lexington 859.276.3506 | Paducah 270.898.3637 | Hazard 606.487.0511

Chemical, Biological, Physical, Molecular, and Toxicological Services

CERTIFICATE OF ANALYSIS

3110636

Date Reported

Date Received

Date Sampled

Emerald Performance Materials Brenda Abko

WET Testing

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE;

DIVISION MANAGER, KENTUCKY DIVISION

11/20/2013

11/12/2013 11/11/2013

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federel, state, or local authorities before acting in reliance on the regulatory limits provided.

For any feedback concerning our services, please contact Michael Flournoy, the Division Manager at 502.962.6400. You may also contact Sean Hyde, Chief Operating Officer at sean.hyde@microbac.com or James Nokes, President at james.nokes@microbac.com

The data and other information contained on this, and other accompanying documents, represents only the sampla(s) analyzed and is rendered upon the condition that it is not to be reproduced wholly or in part for advertising or other purposes without writien approval from the laboratory.

Microbac Laboratories, Inc.

KENTÜCKYTESTING LABORATORY DIVISION 3323 Gilmore Industrial Blvd. Louisville, KY 40213 502.962.6400 Fax: 502.962.6411 Evansville 812.464.9000 | Lexington 859 276.3506 | Paducah 270.898.3637 | Hazard 606 487.0511 Member

Chemical, Biological, Physical, Molecular, and Toxicological Services

CERTIFICATE OF ANALYSIS

	3110864		
Emeraid Performance Materials	0110004	Date Reported	11/21/2013
Brenda Abke		Date Duc	11/25/2013
1550 County Road 1450 North		Date Received	11/14/2013
Henry IL, 61537		Customer #	E6920
		Customer P.O.	HE-40047185-UB

WET Testing

Analysis	00C Qu	alfiler Resul	t Units	Min	Max	Method	Rpt Limit	Date	Time	Tech
Sample: 01 Effluer	nt - Comp	posite						Sampled	11/13/202	3@ 7:59
Aikalinity, Total as CaCO3		210	ma/L			SM 2320B	5.0	11/2	0/2013 17:00	ATM
Chlorine, Total Residual		HI 0.070	mg/L			SM 4500 CLG	0 020	174	4/2013 12:33	DZW
Nitrogen, Ammonia		25	mg/L			SM 4500 NH3 G	2.5	11/2	0/2013 17:24	JLC
Hardness Pkg. By ICP										
Calcium		58	т в/L			EPA 200.7	0,50	11/1	J/2013 11:32	MSR.
Magnesium		24	mg/L			EPA 200.7	0.20	11/1	/2013 11;32	MSR
Hardness, Total as CaCO3		240	mg/L			SM 2340B	12	11/1	3/2013 11:32	MSR
Sample: 02 River i Sampled By Customer	Water							Sampled	11/13/201	3@ 7:28
Alkalinity, Total as CaCO3		170	ing/L			SM 2320B	5.0	11/2	/2013 17:00	АТМ
Chlorine, Total Residual		0.040	mg/L			SM 4500 Cl G	0.020	11/1	1/2013 12:38	₽Z₩
Nitrogen, Ammonia		<0,25	mg/L			SM 4500 NH3 G	0.25	11/2	/2013 13:59	ЛC
Hardness Pkg. By ICP										
Calcium		64	mg/L			EPA 200.7	0,50	11/1	/2013 11:37	MSR
Magnesium		25	ாழ∕L			EPA 200.7	0.20	11/1	1/2013 11:37	MSR
Hardness, Total as CaCO3		260	mg/L			SM 2340B	1.2	11/3	//2013 11:37	MSR

Qualifier Definitions

H1 Sample received outside of holding time for these analytes.

The following analyses were not run at at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

Laboratory	Analysis	Melbod
Microbac Laboratories, Kentucky Testing Laboratory, Lexington Site	Chlorine, Total Residual	SM 4500 CI G

Microbac Laboratories, Inc.

KENTUCKYTESTING LABORATORYDIVISION 3323 Gitmore Industrial Blvd. Louisville, KY 40213 502.962.6400 Fax: 502.962.6411 Evansville 812.464.9000 | Lexington 859 276.3506 | Paducah 270.898.3637 | Hazard 606.487.0511 Member

Chemical, Biological, Physical, Molecular, and Toxicological Services

CERTIFICATE OF ANALYSIS

3110864

Date Reported

Date Received

Date Sampled

Emerald Performance Materials Brenda Abke

WET Testing

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

LISA MAI

11/21/2013

11/14/2013

11/13/2013

DIVISION MANAGER, KENTUCKY DIVISION

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

For any feedback concerning our services, please contect Michael Flournoy, the Division Maneger at 502.962.6400. You may also contact Sean Hyde, Chief Opereting Officer at sean.hyde@microbac.com or Jemes Nokes, President at james.nokes@microbac.com

The data and other information contained on this, and other accompanying documents, represents only the sample(a) analyzed and is rendered upon the condition that it is not to be reproduced wholly or in part for advertising or other purposes without written approval from the laboratory Microbac Laboratories, Inc. KTL Division Lexington

Freshwater Acute Ceriodaphnia dubia Toxicity Benchsheet

48-Hour Static Non-Renewal

EPA 821-R-02-012 Method 2002.0 (Non-Potable Water) SOP Revision 130721

Discharge		Em	erald P	erforma	ance	Dilutio	n Wate	r Used			Mod. Hard Synthetic Fresh					
Location					Outfa	II 001		Dilution	n Wate	r Batch	Numbe	r		E3022	8 + Riv	er
Sample N	umber				31106	536-01		Source	Cultur	e				Mas	s 1106	
Test Initiat	ted Date/Tin	ne/Anal	yst	11/	12/13 1	10:35 E	DZW	Organi	sm Ag	e				<2	4 hrs	
Test Term	inated Date,	/Time/A	nalyst	11	/14/13/	9:55 K	EM	Date/time Sample Collected					11/11/2013 7:53			
- WINGSHIT	A MARY IN CONTRACTOR AND A	Live	Oreant			all	I - Carlos -	Discolude Owgoon Conduct					Tomporaturo			
Sample	Replicate	Live	Hour	smat	(Standard Units)			Disse	(mall)	kygen	-(1)	nducu nhos/c	cm) (Deg. (ture	
(% Eff.)	· ID	AND AND A		La production of the	A CONTRACTOR				(11.3-1)							3
一個的一個		0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
control	1	5	5	5	7.4		7.4	8.3		9.2	294		314	24.8	26.0	25.4
	2	5	5	5					-							
	3	5	5	5												
	4	5	5	5		$\Sigma = \chi$										
River	5	5	5	5	7,5		8.1	8.3		9.5	774		730	25.8	26.0	25.4
	6	5	5	5												
	7	5	5	5												
1	8	5	5	5							1					
3.125	9	5	5	5	7.6	l	8.3	8.7		9.6	1281		1180	25.8	26.0	25.6
	10	5	5	5												
	11	5	5	5												
	12	5	5	5												
6.25	13	5	5	5	7.7		8,3	8.8		9.5	1733		1591	25.8	25.8	25.6
	14	5	4	4												
	15	5	5	5												
	16	5	5	5												
12,5	17	5	5	4	7.7		8.4	8.8		9.6	2703		2501	25.8	25.8	25.4
	18	5	5	5												
	19	5	5	5		•										
	20	5	5	5												
25	21	5	0	0	7.5		8.4	8.6		9.6	4452		4197	25.8	25.8	25.4
	22	5	0	0												
	23	5	0	0												
	24	5	0	0												
Analyst		DZW	KEM	KEM	DZW		KEM	DZW		KEM	DZW		KEM	DZW	KEM	KEM

Sample Water TRC (mg/L)	Control H ₂ O - Alkalinity (mg/L)	Control H ₂ O Hardness (mg/L)	Thermo- meter	pH Meter	DO Meter	Conductivity Meter	Randomization Template ID:
0.06	57	86	Laser 2	pH-3	DO-5	COND-1	

Comments:

.

Microbac Laboratories, Inc. KTL Division Lexington

Freshwater Acute Ceriodaphnia dubia Toxicity Benchsheet

48-Hour Static Non-Renewal

EPA 821-R-02-012 Method 2002.0 (Non-Potable Water) SOP Revision 130721

Discharge Location Sample N Test Initia Test Term	yst .nalyst	Em 	erald P Outfa 31106 12/13 1 /14/13	erforma all 001 336-01 10:35 E 9:55 Kl	DZW EM	Dilution Water Used Dilution Water Batch Number Source Culture Organism Age Date/time Sample Collected					Mod. Hard Synthetic Fresh E30228 + River Mass 1106 <24 hrs 11/11/2013 7:53						
Sample	Replicate	Live	Organi Hour	sm at	m at (Stand		pH (Standard Units)		Disso	lved O (mg.L)	xygen) (u	mductiv mhos/q	/ity m)	Τe	empierat (Deg. C	ure))
(/0, ⊑11.)	Constantial BA (Pro-	0	24	48 .	0	24	-48	-i	24	48	Ō	24	48	. 0	24	-48	
50	1	5	0	0	7.4		8.3	8.6		8.4	7875		7527	25.8	25,6	25.4	
	2	5	0	0				-									
	3	5	0	0													
	4	5	0	0													
	5																
	6													1			
	7																
	8																
	9																
	10																
	11										-						
	12																
	13									1							
	14																
1	15																
).	16																
	17																
	18																
	19																
	20					4											
	21																
	22																
	23																
	24																
Analyst		DZW	KEM	KEM	DZW		KEM	DZW		KEM	DZW		KEM	DZW	KEM	KEM	
Sample Water TRC (mg/L) Control Alkalin (mg/L)		ol H ₂ O linity g/L)	Control H ₂ O Hardness (mg/L)		The me Las	Thermo- meter		pH Meter		DO Meter M			luctivity Randomization eter Template ID:				

Comments:

				Acute	Daphnid Test-48	Hour Survival		
Start Date:	11/12/201	3 10:35	Test ID:	3110636-C		Sample ID:	Emerald Performance	
End Date:			Lab ID:	KTL-Microb	ac Laboratories	Sample Type:	EFF2-Industrial	
Sample Date:			Protocol:	EPA 821-R	-02-012	Test Species:	CD-Ceriodaphnia dubia	
Comments:		_						
Conc-%	1	2	3	4				
River Control	1.0000	1.0000	1.0000	1.0000				
3.125	1.0000	1.0000	1.0000	1.0000				
6.25	1.0000	0.8000	1.0000	1.0000				
12.5	0.8000	1.0000	1.0000	1.0000				
25	0.0000	0.0000	0.0000	0.0000				
50	0.0000	0.0000	0.0000	0,0000				

		_	Tr	ansform:	Arcsin Sc	uare Roo	t	Rank	1-Talled	Number	Total
Conc-%	Mean	N-Mean_	Mean	Min	Max	CV%	N	Sum	Critical	Resp	Number
River Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4			0	20
3,125	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18,00	10.00	0	20
6.25	0.9500	0.9500	1.2857	1.1071	1.3453	9,261	4	16.00	10.00	1	20
12.5	0.9500	0.9500	1.2857	1.1071	1.3453	9.261	4	16.00	10.00	1	20
25	0,0000	0.0000	0.2255	0.2255	0.2255	0.000	4			20	20
50	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4			20	20

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-	normal dis	tribution	(p <= 0.01)	_	0.67657	0.844	-1.807	2.82967
Equality of variance cannot be con	firmed _							
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤÚ				
Steel's Many-One Rank Test	12.5	25	17.6777	8				

Trimmed Spearman-Karber

Trim Level	EC50	95 <u>%</u>	CL				
0.0%	16.494	14.991	18.147				
5.0%	17.358	16,720	18.020				
10.0%	17,358	16,720	18.020				
20.0%	17.358	16.720	18.020				
Auto-0.0%	16.494	14.991	18.147				

LC50= 16.497 49%

ī

T

i

Microbac Laboratories, Inc. KTL Division Lexington

Freshwater Acute Pimephales promelas Renewal Toxicity Benchsheet

EPA 821-R-02-012 Method 2000.0 (Non-Potable Water) SOP Revision 130721

Discharge	r	Emerald Performance Dilut										Dilution Water Used				Mod. Hard Synthetic Fresh			
Location					Outfa	all 001				Dilutio	n Wate	r Batch	No.	E30228-29 + River					
Sample N	umber			3110	636-01	31108	64-01			Source	e Cultur	0		1108					
Test Initat	ed Date/Tim	e/Analy	/st			11/12/1	3 10:5	3 DZW		Organi	sm Ag	e		(4 d	lays			
Test Term	inated Date/	Time/A	nalyst		11/16/13 10:53 DZW Date/Time Sa							mple C	ollected		11/11/2013 7:53				
										Renew	/ai Time			11/14/13 10:30 DZW					
Eff.	Replicate	1	Numbe	r of Liv	e	*	pH			Dissolved Oxygen					Conductivity				
(%)	ID	04	gamon	70					5) T			Brez		and to the					
Course maneta hits	Children of Standard State	24	40	12	90	The second	70	77	7.0	0.0				004	004	005	040		
control	1	10	10	10	10	(.4	1.3	1.1	7.8	8.3	8.0	8.1	6.8	294	301	295	319		
	2	10	10	10	10														
river	3	10	10	10	10	7.5	8.0	1.1	8.3	8.3	8.0	9.7	6.8	774	733	773	809		
	4	10	10	9	9												1000		
3,125	5	10	10	10	9	7.6	8.2	7.8	8.3	8.7	7.8	9.7	6.8	1281	1209	1288	1366		
	6	10	9	8	8											-			
6.25	7	10	10	10	9	7.7	8.2	7.8	8.3	8.8	7.6	9.7	7.0	1733	1665	1720	1826		
	8	10	10	10	9												-		
12.5	9	10	9	9	9	7.7	8.2	7.7	8.3	8.8	7.6	9.6	6.9	2703	2638	2613	2826		
	10	10	10	9	8												1		
25	11	6	0	-	194	7.5	8.2	-		8.6	7.6			4452	4286	÷.			
	12	5	0	-	-														
50	13	0	0	-	ಾಕ	7.4	8.2	-		8.6	7.6			7875	7611				
	14	0	0	-															
							_												
						21													
Analyst		KEM	DZW	DZW	DZW	DZW	DZW	DZW	DZW	DZW	DZW	DZW	DZW	DZW	DZW	DZW	DZW		
Sample V (m	Sample Water TRC (mg/L) Control Water W Alkalinity Har (mg/L) (n		Cor Wa Hard (m	ntrol iter ness g/L	DO N	Meter D	pH N II	fleter D	Chic Me II	orine Itor D	Cond	uctivity ID	Meter	The	ermomo ID	eter			
0.06	0.07	57 86		6	DC	0-5	PH	1-3	N	A	(COND-	1	l	aser 2				
						1945					500 M ER	Appro	ved By		LLM				
Comment	S;																		

S\:Quality System\Quality System Documents\New Protection\ToxicIty 96-hour Fish Renewal Benchsheet 110613.xls

Microbac Laboratorles, Inc. KTL Division Lexington

Renewal Toxicity Test Temperature Record

96 Hour Acute Pimephales promelas EPA 821-R-02-012 Method 2000.0 (Non-Potabl Water) SOP Rev. 130721

Discharger	Emerald Performance	Dilution Water Used	Mod. Hard Synthetic Fresh
Location	Outfall 001	Dilution Water Batch Number	E30228 + River
Sample Number	3110636-01 / 3110864-01	Source Culture	1108
Test Initated Date/Time/Analyst	11/12/13 10:53 DZW	Organism Age	4 days
Test Terminated Date/Time/Analyst	11/16/13 10:53 DZW	Date/Time Sample Collected	11/11/2013 7:53

	Temperature (°C)										
Test Concentration	0 Hours	24 Hours	48 Hours Pre	48 Hours Post	72 Hours	96 Hours					
control	24.8	25.2	25.8	24.4	24.4	24.6					
river	25,8	25.2	24.4	25.2	24.8	24.6					
3.125	25.8	25.4	24.8	24.8	25.0	24.8					
6.25	25.8	25.4	24.6	24.6	25.2	24.8					
12.5	25,8	25,4	24.6	24.4	25.0	24.8					
25	25.8	25.2	-	25.0	-						
50	25.8	25.4	-	25.2		-					
		(a)									
Analyst	DZW	KEM	DZW	DZW	DZW	DZW					
Thermometer ID	Laser 2				-						

Comments:

S\:Quality System\Quality System Documents\New Protection\Toxicity 96-hour Fish Renewal Temperature Record 110613.xls

Acute Fish Test-96 Hour Survival									
Start Date:	11/12/2013	3 10:53	Test ID:	3110636-F	Sample ID:	Emerald Performance			
End Date:	11/16/2013	3 10:53	Lab 1D:	KTL-Microbac Laboratories	Sample Type:	EFF2-Industrial			
Sample Date:			Protocol:	EPA 821-R-02-012	Test Species:	PP-Pimephales promelas			
Comments:					-				
Conc-%	1	2							
River Control	1,0000	0.9000		•					
3.125	0.9000	0.8000							
6.25	0.9000	0.9000							
12.5	0.9000	0.8000	1						
25	0.0000	0.0000)						
500	0,0000	0.0000)						

Transform: Arcsin Square Root									Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp	Number
River Control	0.9500	1.0000	1.3305	1.2490	1.4120	8.661	2	1	20
3.125	0.8500	0.8947	1.1781	1.1071	1,2490	8.517	2	3	20
6.25	0.9000	0.9474	1.2490	1.2490	1.2490	0.000	2	2	20
12.5	0.8500	0.8947	1.1781	1.1071	1,2490	8.517	2	3	20
25	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20
500	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20

Auxiliar	/ Tests		_	
Marmalit	(of the	data	not	00000

Normality of the data set cannot be confirmed Equality of variance cannot be confirmed

Equality of torp		01.00.0011	<u>a no</u> a	
				Trimmed Spearman-Karber
Trim Level	EC50	95%	CL	
0,0%				
5.0%				
10.0%	16.964	14,510	19.833	1.0
20.0%	16,971	15.992	18.010	
Auto-7.9%	16.794	14.850	18.992	0.9 -
				0.8 -

Statistic

Critical

Skew

Kurt

I

Collected by:_ 00 Outfall/Station;

2520 Regency Road Lexington, Kentucky 40503-2921 (859) 276-3506

Grab	Collection Ten				p (°C) upo Date:	n Pick up /	shippin	g	Temp (°C) upon receipt at Lab Date: 11-12-73			Volume	Visual			
Kiver	Date		Time	On site	Rec. by	Client	Init,	Time	Lab	oratory	Re	ec. by	の記録	Time	Collected	Description
I	ululi	37	:24						6	γ	L	m	D	235		Clear
2	ulul	37	:26				12		6	0.0	L	m	08	335		clear
3									0							
4										1						
Composite	From To Temp (°C) upon Pick up/shipping Temp (°C) upon receipt at Lab: Date:								Volume	Visual Description						
Plant	Date	Time	Date	Time	On site .	Rec. by	Client	Init	Time	Labora	tory	Rec. by	ÿ	Time	Collected	
1	11/10/17	10:00	What	0 6753					a protection of the pro-	10.	\cap	In	7	0835		Drancish
2																0
First Day Second Day	Rain Ev Rain Ev	vent: Y	es Amou es Amou	1nt (in.) 1nt (in.)	No 1	race Dai race Dai	ly Flow ly Flow	(MGD) (MGD)	<u>59</u>	19.5		COM Riv Her	MENT L-6	s: Kul	ly bleat Sample anding	fim
SAMPLE RE Reliziouished b Signature	Dimg	(Fill in	from top	<u>down):</u> 16 1/13 09	Received Field Signature		Had	sto ,	11	Date/Tim	0~1 ¹⁰	Sample	e Deliv	v <u>er:</u> (JPS() DHL()	FED EX (). OTHER ()
Signature	5 1	-	273 Date	O83	Signature	Dista	NY	uh	~ 11	-1273 (Date/Tim	e e	TEST	TYPE		Acute Cerio (K)	Chronic Cerio ()
Signature			Date	:/Time	Signature					Date/Tim	e	Acute	Fish 🖉	() (Chronic Fish ()	Acute Magna ()

MPLE TY	proud f	e-fani	ance mt	Col	IOMONTTOR	we h	AIN OF	custo	ν γίς (Caro tKill Rai	ll je 26 Lexir	2520 Regency R agton, Kentucky 4 (859) 276-350	oad 0503-2921
Collection Temp (°C) upon Pick up / shipping Temp (°C) upon receipt at Lab Grab Date: 1]-(↓-(3)								t Lab S	Volume	Visual			
	Date	Time	On site	-Rec. by	Client Init.	Time	Labo	ratory	Reč	by	Time	Collected	Description
I	11/13/14	7:260					1	.5	Un	\cap	0825		inar
2	11/13/14	7:280				-	1	2.5	un	\cap	0825		gray
3											140		0 8
4													
• Composite	From Date	ime Date	To -	Temp L	(°C) upon Pick Date:	up / saipj	jîng Time	Temj	p (°C) up Date:	on rećei <u> 1-14</u> Ber: by	pt at Lab: 73 Time	Volume	Visual Description
T	11/17 20	ise uli	7350	ousic	inter by space	COLUMN OF		10	5	Im	118 25	 Alteration and 	AC
2	1112 0						-	_ Q.	-	0.1	0000		Diange
First Day Second Day	Rain Even Rain Even	t: Yes Amo t: Yes Amo	unt (in.)	No T	race Daily Fl	low (MGD)))			COMME Were Henry	Unts: Ke Were Lepin 1	the Stap sample anding	b pulled a from
SAMPLE RI Relinquished Signature	CEIVING (FI	Il in from top	-/3-/3 e/Time	Received Signature	tie Sta	ab	084 11/13	0 /13 Date/Tim	e	Sample E)eliver: U	JPS() DHL()	PED EX () OTHER ()
Signature	1-14	1 <u>3</u> 08 Date	Horime	Signature	aMarti	08:6	D 11-	14-13 Date/Tim	e	TEST TY	(PE:)	(ير) Acute Cerio	Chronic Cerio ()
01 and the		Det	- STRI	Cimohan				Data		Acute Fig	sh (a) (Chronic Fish ()	Acute Magna ()

. .

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
06/04/12	2040.0000					
07/05/12	2154.0000	2097.0000	2016.3898	1935.7797	2177.6102	2258.2203
08/01/12	1767.0000	1987.0000	1788.1307	1589.2614	2185.8693	2384.7386
09/04/12	2041.0000	2000.5000	1835.8944	1671,2888	2165.1056	2329.7112
10/01/12	2040.0000	2008.4000	1864.7570	1721.1141	2152.0430	2295.6859
11/01/12	2026.0000	2011.3333	1882.6544	1753.9755	2140.0123	2268.6912
12/06/12	1969.0000	2005.2857	1886.7337	1768.1818	2123.8377	2242,3897
01/03/13	1893.0000	1991.2500	1874.5333	1757.8166	2107.9667	2224.6834
02/04/13	2041.0000	1996.7778	1886.3471	1775.9163	2107.2085	2217.6392
03/04/13	1969.0000	1994.0000	1889.5150	1785.0300	2098.4850	2202,9700
04/01/13	2004.0000	1994,9091	1895.7401	1796.5711	2094.0781	2193.2471
05/02/13	2042.0000	1998.8333	1903.3072	1807.7811	2094.3595	2189.8856
06/04/13	2052.0000	2002.9231	1910.2827	1817.6423	2095.5635	2188.2039
07/03/13	2116.0000	2011.0000	1917.0033	1823.0065	2104.9967	2198.9935
08/02/13	2198,0000	2023.4667	1920.8238	1818.1810	2126.1095	2228.7523
09/03/13	2427,0000	2048.6875	1907.2286	1765.7696	2190.1464	2331,6054
09/10/13	2235.0000	2059.6471	1915.4185	1771.1900	2203.8756	2348.1041
10/02/13	2079.0000	2060.7222	1920.7257	1780.7291	2200,7188	2340.7153
10/07/13	2201.0000	2068.1053	1928.2987	1788.4921	2207.9118	2347.7184
11/04/13	2041.0000	2066,7500	1930.5374	1794.3247	2202.9626	2339.1753

T

L

Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
05/01/12	8367.0000					
06/05/12	7930.0000	8148.5000	7839.4943	7530.4887	8457.5057	8766.5113
07/05/12	8219.0000	8172.0000	7949.7411	7727.4823	8394.2589	8616.5177
08/01/12	7791.0000	8076,7500	7813.6475	7550,5450	8339,8525	8602.9550
09/04/12	7385.0000	7938.4000	7554.1855	7169.9710	8322,6145	8706.8290
10/02/12	7384.0000	7846.0000	7434.5110	7023.0220	6257.4890	8668,9780
11/01/12	7946.0000	7860.2857	7482.7526	7105.2195	8237.8188	8615.3519
12/04/12	6146.0000	7646.0000	6946.3454	6246.6908	8345.6546	9045.3092
01/03/13	6968.0000	7570.6667	6878.2773	6185.8880	8263.0560	8955.4453
02/04/13	8367.0000	7650.3000	6950.6210	6250.9420	8349.9790	9049.6580
03/05/13	7000.0000	7591.1818	6899.0545	6206.9273	8283.3091	8975.4364
04/01/13	7281.0000	7565.3333	6899.3688	6233.4042	8231.2979	8897.2624
05/02/13	7790.0000	7582.6154	6941.9654	0301.3154	8223.2654	8863.9154
06/07/13	7000.0000	7541.0000	6906.0933	6271.1867	8175.9067	8810.8133
07/03/13	6566.0000	7476.0000	6814.4200	6152.8399	8137.5800	8799.1601
08/02/13	7652.0000	7487.0000	6846.3402	6205,6805	8127.6598	8768.3195
09/05/13	8073.0000	7521.4706	6885.0809	6248.6911	8157.8603	8794.2501
10/02/13	8219.0000	7560.2222	6921.3175	6282.4128	8199.1269	8838,0317
10/07/13	8117.0000	7589.5263	6955.6199	6321.7134	8223,4328	8857.3392
11/05/13	7549.0000	7587.5000	6970.4342	6353.3685	8204.5658	8821.6315